Square function estimates for the evolutionary p-Laplace equation

نویسندگان

چکیده

We prove novel (local) square function/Carleson measure estimates for non-negative solutions to the evolutionary $ p $-Laplace equation in complement of parabolic Ahlfors-David regular sets. In case heat equation, Laplace as well corresponding function have proven fundamental symmetry and inverse/free boundary type problems, particular study (parabolic) uniform rectifiability. Though implications are less clear mainly due its lack homogeneity, we give some initial applications rectifiability, behaviour Fatou theorems \nabla_Xu $.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

VISCOSITY SUPERSOLUTIONS OF THE EVOLUTIONARY p-LAPLACE EQUATION

has this character. Even obvious results for this equation may require advanced estimates in the proofs. We refer to the books [DB] and [WZYL] about this equation, which is called the “evolutionary p-Laplacian equation,” the “p-parabolic equation” or even the “non-Newtonian equation of filtration.”. Our objective is to study the regularity of the viscosity supersolutions and their spatial gradi...

متن کامل

ENCLOSURE METHOD FOR THE p-LAPLACE EQUATION

We study the enclosure method for the p-Calderón problem, which is a nonlinear generalization of the inverse conductivity problem due to Calderón that involves the p-Laplace equation. The method allows one to reconstruct the convex hull of an inclusion in the nonlinear model by using exponentially growing solutions introduced by Wolff. We justify this method for the penetrable obstacle case, wh...

متن کامل

Eigenvalues Estimates for the p-Laplace Operator on Manifolds

The Laplace-Beltrami operator on a Riemannian manifold, its spectral theory and the relations between its first eigenvalue and the geometrical data of the manifold, such as curvatures, diameter, injectivity radius, volume, has been extensively studied in the recent mathematical literature. In the last few years, another operator, called p-Laplacian, arising from problems on Non-Newtonian Fluids...

متن کامل

EXISTENCE OF SOLUTIONS TO A PARABOLIC p(x)-LAPLACE EQUATION WITH CONVECTION TERM VIA L∞ ESTIMATES

This article is devoted to the study of the existence of weak solutions to an initial and boundary value problem for a parabolic p(x)-Laplace equation with convection term. Using the De Giorgi iteration technique, the authors establish the critical a priori L∞-estimates and thus prove the existence of weak solutions.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete and Continuous Dynamical Systems

سال: 2023

ISSN: ['1553-5231', '1078-0947']

DOI: https://doi.org/10.3934/dcds.2023044